First Order Differential Equations

Seperable Equations A differential equation is called seperable if it is of the form

$$g(y)y' = f(x)$$

An equation is separable if we can isolate all y terms on one side of the equation and all x terms on the other side. Equations of this type can be solved by integrating each side of the equation with respect to the appropriate variable.

Examples

1. y' = yx

This equation is separable, as can be seen after dividing by y. This gives $\frac{y'}{y} = x$. Integrating both sides gives $\ln y = x + C \implies y = e^{x+C} = Ce^x$. When we divided by y, we tacitly assumed that $y \neq 0$. We must therefore check if y = 0 solves the differential equation. The solutions are then y = 0 and $y = Ce^x$.

2. $2xy^2 - x^4y' = 0$

We can rearrange this equation to give $\frac{2}{x^3} = \frac{y'}{y^2}$. This is separable, and the solution is revealed by integrating. $\frac{-1}{x^2} + C = \frac{-1}{y} \implies y = \frac{x^2}{1 + Cx^2}$.

First Order Linear Equations These differential equations take the general form

$$y' + p(x)y = q(x)$$

where p(x) and q(x) are functions of x only. The following are examples of linear equations.

1

- 1. $y' + x^2y = 0$
- 2. $y' + \cos(x) y = x^2$
- 3. $y' + \frac{y}{1-x} = e^x$

The following equations would not qualify as linear.

- 1. $(y')^2 \sin(x) y = 0$
- 2. $y' + \frac{x^2}{y} = 2x$
- 3. $y' + e^x y = y^2$

To solve these equations, we use the integrating factor $\mu = e^{\int p(x) dx}$. With this integrating factor, the solution can then be written as $y = \frac{1}{\mu} \int \mu \ q(x) \ dx$.

Examples

1.
$$y' + \frac{y}{x} = 2e^{x^2}$$

In this case, $p(x) = \frac{1}{x}$ and $\mu = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$. Using our above equation for y gives the solution $y = \frac{1}{x} \int 2x e^{x^2} dx = \frac{1}{x} (e^{x^2} + C)$

 $2. y' + y \cos x = \cos x$

In this case, $p(x) = \cos x$ and $\mu = e^{\int \cos x \, dx} = e^{\sin x}$. Again, applying the solution equation gives $y = \frac{1}{e^{\sin x}} \int \cos x \, e^{\sin x} \, dx = e^{-\sin x} (e^{\sin x} + C) = 1 + Ce^{-\sin x}$

Exact Equations An equation of the form

$$M dx + N dy = 0$$

with M and N functions of x and y, is said to be exact if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

To solve an exact equation, we follow these steps:

- 1. Our solution will be $F(x,y) = \Psi(y) + \int M \ dx = C$, where $\Psi(y)$ is a function entirely of y to be found later.
- 2. Calculate the integral $\int M dx$.
- 3. Take the derivative of F(x,y) with respect to y. Set this equal to N and solve for $\Psi'(y)$. $\Psi'(y) = N \frac{\partial \int M \ dx}{\partial y}$.
- 4. Find $\Psi(y)$ by integrating $\Psi'(y)$ with respect to y. $\Psi(y) = \int \Psi'(y) \ dy$.
- 5. Plug $\Psi(y)$ into F(x,y) to obtain the solution.

Examples

1. $2xy dx + (x^2 + 2y) dy = 0$

Here M=2xy and $N=x^2+2y$. We see the equation is exact since $\frac{\partial M}{\partial y}=2x=\frac{\partial N}{\partial x}$. $F(x,y)=\int 2xy\ dx+\Psi(y)=x^2y+\Psi(y)$. Now we solve for $\Psi(y)$. $\Psi'(y)=N-\frac{\partial(x^2y)}{\partial y}=(x^2+2y)-x^2 \implies \Psi'(y)=2y$. Integrating we see that $\Psi(y)=y^2$. Our solution is then $x^2y+y^2=c$.

2. $(2xy - 9x^2) dx + (2y + x^2 + 1) dy = 0$

Here $M=2xy-9x^2$ and $N=2y+x^2+1$. We see the equation is exact since $\frac{\partial M}{\partial y}=2x=\frac{\partial N}{\partial x}$. $F(x,y)=\int 2xy-9x^2\ dx+\Psi(y)=x^2y-3x^3+\Psi(y)$. Next, solve for $\Psi(y)$. $\Psi'(y)=N-\frac{\partial (x^2y-3x^3)}{\partial y}=(2y+x^2+1)-x^2=2y+1$. Integrate this to see that $\Psi(y)=y^2+y$. The solution is then $F(x,y)=x^2y-3x^3+y^2+y=C$.

Making Equations Exact Ocassionally, one will encounter an equation of the form

$$M dx + N dy = 0$$

that does not meet the criterion for exactness. In certain situations, we can find an appropriate integrating factor which will transform this into an exact equation.

Case 1 Integrating factors of x only: If the quantity $p(x) = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function with no occurances of y, then $\mu = e^{\int p(x) dx}$ is an integrating factor for the differential equation.

Case 2 Integrating factors of y only: If the quantity $p(y) = \frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function with no occurances of x, then $\mu = e^{\int p(y) \ dy}$ is an integrating factor for the differential equation.

When the integrating factor μ exists, one may multiply the differential equation by μ to created an exact equation.

Examples

1.
$$(y^2(x^2+1)+xy) dx + (2xy+1) dy = 0$$

 $\frac{\partial M}{\partial y} = 2y(x^2+1) + x$, and $\frac{\partial N}{\partial x} = 2y$. As we can see, this equation is not exact. We will search for an integrating factor. $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{2y(x^2+1) + x - 2y}{2yx + 1} = \frac{2yx^2 + x}{2yx + 1} = x$. This a function entirely of x so that $\mu = e^{\int x \ dx} = e^{\frac{x^2}{x}}$ will be an integrating factor.

Multiply the initial equation by μ to give $\left(e^{\frac{x^2}{2}}y^2(x^2+1)+e^{\frac{x^2}{2}}xy\right)dx+\left(2e^{\frac{x^2}{2}}xy+e^{\frac{x^2}{2}}\right)dy=0$. Now $\frac{\partial M}{\partial y}=2x^2e^{\frac{x^2}{2}}y+2ye^{\frac{x^2}{2}}+xe^{\frac{x^2}{2}}=\frac{\partial N}{\partial x}$ so that the equation is now exact and can be solved via the methods previously discussed.

2.
$$(x^2y + 2y^2\sin x) dx + (\frac{2}{3}x^3 - 6y\cos x) dy = 0$$

The equation is not exact since $\frac{\partial M}{\partial y} = x^2 + 4y \sin x$, and $\frac{\partial N}{\partial x} = 2x^3 + 6y \sin x$. Now attempt to find an integrating factor. $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} = \frac{2x^2 + 6y \sin x - x^2 - 4y \sin x}{x^2y + 2y^2 \sin x} = \frac{x^2 + 2y \sin x}{x^2y + 2y^2 \sin x} = \frac{1}{y}.$

This is a function entirely of y so the equation has an integrating factor of the form $e^{\int \frac{1}{y} dy} = e^{\ln y} = y$.

Multiply the initial equation by y to give $(x^2y^2 + 2y^3\sin x) dx + (\frac{2}{3}x^3y - 6y^2\cos x) dy = 0$. Now $\frac{\partial M}{\partial y} = 2x^2y + 6y^2\sin x = \frac{\partial N}{\partial x}$. As we can see, this equation is now exact and can be solved accordingly.